
CPSC 365 / ECON 365: Algorithms Yale University

Discussion 5

Out: March 3, 2022 Discussed: March 4, 2022

1 Rod Cutting

You are given a metal rod of length n inches, for some integer n ≥ 1. Treating the left endpoint

of the rod as position 0, and the right endpoint as position n, you can cut the rod at any integer

position i = 1, . . . , n − 1 at no cost. You can make cuts at multiple positions (or make no cuts at

all). Every resulting piece will be sold at a predefined price depending on its length. These prices

are given by a function P , where P (i) is the price for which you can sell a rod of length i, for all

i = 1, . . . , n.

Given the function P , design a dynamic programming algorithm for determining the maximum

achievable profit from cutting the rod and selling the resulting pieces.

Example:

Rod of length 4. P = (1, 5, 8, 9).

Profit-maximizing strategy: cut at index 2, and sell two pieces of length 2.

Total profit is 2 · P (2) = 2 · 5 = 10.

Problems:

(a) Define what the entries of your dynamic programming table are, in words. (E.g., T (i) is . . . ).

What is the final answer of your algorithm in terms of the table entries?

(b) State the recurrence for entries of the table in terms of smaller subproblems, and state the

base case(s). (You don’t have to give a formal proof, but explain why the recurrrence is

correct).

(c) Write pseudocode for your algorithm to solve this problem.

(d) Analyze the running time of your algorithm.

2 Bottom-Up vs. Top-Down

Recall from class we can compute the Fibonacci numbers F (n) = F (n−1)+F (n−2) in two different

ways: Top-down (using recursion with memoization) and bottom-up (using dynamic programming).

5-1



In this case, we saw that they both have the same running time (although typically the constant

involved in recursion is larger due to overhead), since they are computing the same subproblems in

different ways.

Now suppose we have a sequence G(n) satisfying:

G(n) = G(n− 1000) +G(n− 2000)

for all n ≥ 2, with base cases G(1) = 1 and G(n) = 0 for n ≤ 0. Suppose you want to compute

G(106). Which method would you use: bottom-up or top-down?

3 Running Bellman-Ford

Run the iterations of Bellman-Ford on the following graph, to compute the shortest distance from

s to all vertices v.
Figure 4.14 The Bellman-Ford algorithm illustrated on a sample graph.

E

B

A

G

F

D

S

C

3

1

1

−2

2

10

−1

−1

−4

1

8 Iteration
Node 0 1 2 3 4 5 6 7
S 0 0 0 0 0 0 0 0
A ∞ 10 10 5 5 5 5 5
B ∞ ∞ ∞ 10 6 5 5 5
C ∞ ∞ ∞ ∞ 11 7 6 6
D ∞ ∞ ∞ ∞ ∞ 14 10 9
E ∞ ∞ 12 8 7 7 7 7
F ∞ ∞ 9 9 9 9 9 9
G ∞ 8 8 8 8 8 8 8

4.7 Shortest paths in dags
There are two subclasses of graphs that automatically exclude the possibility of negative cy-
cles: graphs without negative edges, and graphs without cycles. We already know how to
efficiently handle the former. We will now see how the single-source shortest-path problem
can be solved in just linear time on directed acyclic graphs.
As before, we need to perform a sequence of updates that includes every shortest path as

a subsequence. The key source of efficiency is that

In any path of a dag, the vertices appear in increasing linearized order.

Therefore, it is enough to linearize (that is, topologically sort) the dag by depth-first search,
and then visit the vertices in sorted order, updating the edges out of each. The algorithm is
given in Figure 4.15.

Notice that our scheme doesn’t require edges to be positive. In particular, we can find
longest paths in a dag by the same algorithm: just negate all edge lengths.

124

5-2


	Rod Cutting
	Bottom-Up vs. Top-Down
	Running Bellman-Ford

