CPSC 365 / ECON 365: Algorithms	Yale University
Discussion 7	
Out: April 7, 2022	Discussed: April 8, 2022

1 STINGY-SAT is Hard

STINGY-SAT is the following decision problem: given a Boolean formula ϕ in CNF and a positive integer k, return YES if there exists a satisfying assignment of ϕ in which at most k variables are **True**, and NO otherwise. Prove that STINGY-SAT is **NP**-complete via the following two steps:

- (a) Show that STINGY-SAT is in **NP**
- (b) Prove that SAT reduces to STINGY-SAT, which implies that STINGY-SAT is NP-hard.

2 CLIQUE is Hard

CLIQUE is the following problem: given a graph G and an integer $k \ge 2$, return YES if G contains a clique of size k, and return NO otherwise. Recall that a clique is a subgraph S of G such that every pair of vertices in S shares an edge in G.

- (a) Show that CLIQUE is in **NP**
- (b) Prove that 3SAT reduces to CLIQUE, which implies that CLIQUE is NP-hard.